Routines (alphabetical) > Routines: L > LA_INVERT

LA_INVERT

Syntax | Return Value | Arguments | Keywords | Examples | Version History | See Also

The LA_INVERT function uses LU decomposition to compute the inverse of a square array.

LA_INVERT is based on the following LAPACK routines:

LAPACK Routine Basis for LA_INVERT

Output Type

LAPACK Routine

Float

sgetrf, sgetri

Double

dgetrf, dgetri

Complex

cgetrf, cgetri

Double complex

zgetrf, zgetri

For more details, see Anderson et al., LAPACK Users' Guide, 3rd ed., SIAM, 1999.

Syntax

Result = LA_INVERT( A [, /DOUBLE] [, STATUS=variable] )

Return Value

The result is an array of the same dimensions as the input array.

Arguments

A

The n-by-n array to be inverted.

Keywords

DOUBLE

Set this keyword to use double-precision for computations and to return a double-precision (real or complex) result. Set DOUBLE = 0 to use single-precision for computations and to return a single-precision (real or complex) result. The default is /DOUBLE if A is double precision, otherwise the default is DOUBLE = 0.

STATUS

Set this keyword to a named variable that will contain the status of the computation. Possible values are:

Note: If STATUS is not specified, any error messages will be output to the screen.

Examples

The following program computes the inverse of a square array:

; Create a square array.
array =[[1d, 2, 1], $
[4, 10, 15], $
[3, 7, 1]]
; Compute the inverse and check the error.
ainv = LA_INVERT(array)
PRINT, 'LA_INVERT Identity Matrix:'
PRINT, ainv ## array

When this program is compiled and run, IDL prints:

LA_INVERT Identity Matrix:

1.0000000   1.7763568e-015  6.6613381e-016 0.00000000  1.0000000       1.2212453e-015 0.00000000  0.00000000      1.0000000

Version History

5.6

Introduced

See Also

INVERT , LA_LUDC